
ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

SEMESTER PROJECT REPORT

Omnibot: Mobile Furniture Baseline Development

Student: Chuanfang NING
Supervisor: Prof. Auke Ijspeert

Assistants: Dr. Anastasia Bolotnikova, Dr. Alessandro Crespi

7th January 2022

Contents

1 Introduction 2
1.1 Motivation . 2
1.2 Project Goals . 2
1.3 Report Outline . 3

2 Mechanics 4
2.1 Attachment Configuration . 4
2.2 Module Expansion . 6

3 Electronics 8
3.1 Limitation of old system . 8
3.2 Connection plans . 9
3.3 Embedded program logic . 10

3.3.1 Motion control . 10
3.3.2 Sonars . 13
3.3.3 LED . 14
3.3.4 Bluetooth . 15

4 Algorithms 16
4.1 Mobile Furniture Localisation . 16
4.2 Mobile Furniture Navigation . 17
4.3 Interactive user Interface . 18
4.4 Voice control . 19
4.5 Gesture control . 21
4.6 Tablet control . 23

5 Conclusion 25

6 Appendix 26

1

1 Introduction

1.1 Motivation

Helping people with limited mobility to enjoy the life as normal people do is always one of
the main interests of robotic research. The efforts can be briefly summarized in 3 directions:

• Substitute: Help people regain part of their body function with neuroprostheics. (Zisis
et al. 2021)

• Facilitate: Help people strengthen their weakened muscle with exo-skeleton. (Vouga et al.
2017)

• Rejuvenate: Train people to gradually reconstruct the connection between neurons with
rehabilitation techniques. (D. Liu et al. 2018)

All of these approaches are universal approaches that are dedicated to increase the mobility of
people from the basics. At a cost, they usually come with expensive devices with customization
and calibration. And the patients themselves would also have to pay extra effort in learning to
adapt to the devices and approaches.

A more economical way that could possibly benefit more people is that instead of directly
improving the patients’ mobility, we can render the infrastructures in the environments mobile
to ease the life of patients. The project Omnibot is dedicated to such a solution: to drive the
furniture around with a robot in a smart home assistive environment.

1.2 Project Goals

The overarching goal of the project is to design, implement and program the Omnibot for
mobile furniture based on a pre-built omni-directional drive robotic platform that is shown in
Fig. 1.

FIGURE 1: Nexus pre-built omni-directional drive platform

The pre-built robot platform with 3 omni-wheels and sonars is designed to run stand-alone
on a low-end embedded system without any extensibility.

2

The project aims at extending this platform in mechanics, electronics and algorithm aspects
to have a fully-functional robot that could render furniture mobile according to patients’ needs.
This robot would act as a baseline that is easy to replicate, extend and configure for future
extensions in intelligent assistive home environment. The details of the project contents are
described below:

• Mechanics

– Design, implement and test the hardware attachment configuration of the robot to
different types of furniture.

– Extend the robot modules according to user demands (Bluetooth, LED)

• Electronics

– Extend the stand-alone embedded system to an interactive embedded system allow-
ing for module extensions and remote control.

– Implement the teleoperation of the existing modules including motors, sonars and
LEDs with high-level commands in ROS framework directly.

• Algorithms

– Baseline localisation implemented with Optitrack in real-time.

– Baseline navigation implemented with simplified visibility graph.

– Baseline interactive control with predefined voice and gesture commands.

– Baseline android mobile user interface application.

1.3 Report Outline

The remainder of this report follows the structure of three parts above:

Section 2 covers the mechanical extension, which explains 1) the attachment-configuration
design, 2) the module extension and 3) future extension possibilities.

Section 3 covers the electronic extension, which explains 1) the limitation of the old
system 2) the design of extended system and 3) detailed working process of sonars/motor-
s/LED/Bluetooth.

Section 4 covers details about the algorithms for 1) localisation, 2) navigation, 3) interactive
control with voice/gesture and 4) mobile application development.

Section 5 summarizes the overall implementation and makes claims from real-world tests.

The appendix section 6 includes the timeline of the project. And as supplementary materials,
the internal Github repository (https://ponyo.epfl.ch/students/mobfur) includes all
the source codes and instructions on how to set up the environment and use the software.

3

https://ponyo.epfl.ch/students/mobfur

2 Mechanics

2.1 Attachment Configuration

For the hardware attachment, the goal is to propose and implement attachment configura-
tion from a robot to a furniture in a secure, economic and interchangeable way. The attachment
configuration is expected to have following functionalities:

• The attachment fully constrains the robot in motion without slips and play.

• The attachment doesn’t hinder the normal use of robot and the furniture.

• The attachment configuration is interchangeable for different kinds of furniture.

Taking all demands into consideration, a "Tripous" attachment configuration came into design
as shown in Fig. 2.

FIGURE 2: Attachment configuration "Tripous"

The design consists of 1) telescopic arms in range 230 368mm, 2) Hands made of R-Clamps
with different sizes and 3) holder to rest the arm when not in use.

As its name implies, the "Tripous" will reach out its arms to grab the legs of the furniture and
drive them as the main body of robot moves. The 3 arm connections ensure that the furniture is
fully constrained and will not slip when it is driven by the robot.

The "Tripous" pushes and pulls the furniture around as robot moves. To reduce the friction,
the furniture has to be equipped with passive wheels. The wheel is driven to resist any motion
in still state to avoid the side effect of slipping brought by this design.

The arms are adapted from stainless steel window latches, which were designed to hold
the window open in windy weather. Using window latches as arms would provide satisfactory
mechanical strength of the connection while saving the cost of designing and manufacturing
arms with high-strength materials.

The R-clamps are aluminum clamps that can be banded according to different furniture

4

legs (round, square or rectangle). The R-clamps are mostly used in tube fixation and are robust
against vibrations due to the cushioning rubber.

The telescopic arms and different sizes R-clamps allow the attachment configuration to fit
into different furniture with different sizes and legs. The size of the furniture can vary as long
as three of furniture’s leg can fit in the ranges of 3 arms as shown in Fig. 3. And the legs of
furniture can be any shape that fit into R-clamps in Fig. 4, which are available in different sizes
(10~60mm diameter) from suppliers.

FIGURE 3: Telescopic range of arms

FIGURE 4: R-clamps

Fig. 5 and Fig. 6 show the simulated and real attachment configuration of Omnibot with a
chair and a table with different sizes and leg shapes.

FIGURE 5: Simulated attachment configuration

5

FIGURE 6: Real attachment configuration

One last trivial part in the "Tripous" design is storage clips for arms at still state as shown in
Fig. 7. The arms would lock into the clip when pressed and could be released whenever needed.

FIGURE 7: Attachment configuration "Tripous"

The proposed design mostly exploits products that were originally designed for other
purposes, which makes the mechanical extension of Omnibot quite economic. The bill of
materials (BOM) summed up to only 2CHF per set (shipping not included), the details of which
can be found on the internal project archive.

2.2 Module Expansion

The Omnibot is expected to be extended according to user demands. In the project two
extensions which do not require drastic hardware change were applied and a design to handle
extensions requiring hardware change was discussed.

First, the Omnibot is extended with LED strip, which provides an intuitive indication of the
operation and intention of the robot. A LED strip with 48 colored LEDs is pasted on the bottom

6

of the robot platform. The LED strip shed light on the ground, from the reflection of which
users can infer the states and intention of the robot. The LED is wired through a drilled hole of
32mm∅ to the on-board controller. The layout of the LED strip on the robot is shown in Fig. 8.

FIGURE 8: Layout of 48 LEDs on the hexagonal robot base

Secondly, the Omnibot is extended with a Bluetooth chip, which is more trivial in design.
The bluetooth chip is exposed outside the metal shell to avoid being shielded.

It is also considered to extend the sensors of the Omnibot as the three sonars failed to
provide enough information for the local obstacle avoidance. The space on the pre-built platform
hardware is fully occupied and the extended sonars (lasers, infra or sonars) require extra space
for placement. A possible solution to this issue could be to add a hardware support layer on
top of the robot platform as shown in Fig. 9. The extended layer could be connected with the
old top layer with printed ABS connectors. In the new design, the old layer would be used for
a room accommodating extension modules and the new layer is connected with the "Tripous"
robot arm structure.

FIGURE 9: Design of the extra layer for more hardware module extensions

7

3 Electronics

3.1 Limitation of old system

The pre-built robot platform comes with a pre-configured embedded system with an
AtMega-328P-20AU kernel as shown in Fig. 10. The board has an SP485-CN converter and
an RS485 interface for sonars, an LS298SO20 motor driver powering at most 4 motors and an
XbeePro wireless for wireless communication. However, the old system could be only configured
to run the robot stand-alone with on-board processing of sonar data and motor commands. The
board cannot be teleoperated as it doesn’t provide enough Serial and timer resources for the
sonars and teleoperation. The serial connection with different modules is switched physically
via jumpers in the yellow circle. Also, the system does not allow module extensions since all
pins are used either by the motor or the sonar.

FIGURE 10: Default AtMega-328P-20AU embedded system

The Omnibot, however, is expected to run interactively according to user desires and with
possibly more complex algorithms requiring more computing powers. What’s more, Omnibot is
expected to be extended with functionalities such as LEDs, new sensors or new actuators.

Due to the limitations of the old AtMega 328 system mentioned above, an Arduino Mega
was introduced to increase the system capacity in the new electronics design, which sends the
wheel speed commands to the old AtMega-328 system, provides new functionalities and allows

8

the communication between the robot and the ROS masters. Tab. 1 shows the comparison
of system resources in the old and new system. Although Arduino Mega has invested some
resources on communicating with old AtMega-328 system, there are still a lot more resources
available for more module extensions.

Resources
Old system New system
AtMega-328 AtMega-328 Arduino Mega

Serials

Sonar Mega AtMega-328
N/A N/A Sonar
N/A N/A Bluetooth
N/A N/A -

Timers

delay delay delay
PWM pulses PWM pulses -
PWM pulses PWM pulses -

N/A N/A -
N/A N/A -
N/A N/A -

Digital Pins 14/14 14/14 17/54
Analogue Pins 2/6 2/6 0/16

PWM 4/4 4/4 0/15
a N/A: not existing b -: free for extension c a/b: used pins/all pins

TABLE 1: System resource comparison of old/new embedded systems

3.2 Connection plans

The connection plan of the whole new system with the AtMega-328 and the Mega boards is
shown in Fig. 11.

FIGURE 11: Flowchart showing the working principle of motor motion control

9

Besides the high-level connection plan of the inter board and electronic elements, a low-
level plan on schematics level is provided in Fig. 12 for future PCB design of compact arduino
expansion shield to further simplify and augment the system. The custom Arduino expansion
consists of a MAX485 chip, a non-isolated DC-DC converter LDO03C, a circuit for generating
inputs for L298 motor driver and exported pin connectors from Arduino Mega.

FIGURE 12: Customized Arduino shield design schematics

In the simplified system design, the AtMega-328 board and expansion would be removed
and the Arduino Mega with a custom expansion shield and motor driver would accomplish all
the task in the current design, which makes up a lite and extensive on-board system.

3.3 Embedded program logic

One of the main contents of this project is to enable the teleoperation of the mobile furniture
with higher level language in ROS structure directly. This requires the basic functionality of
sensors and actuators to be realized on-board. The embedded system behaves like a communic-
ation node for sending sensor data and a processing node for commanding actuators depending
on ROS messages. This subsection describes details about the embedded program logic to
realize this function.

3.3.1 Motion control

The working process of Omnibot motion control is explained as shown in the flowchart
Fig. 13. Mega subscribes to the Twist type topic cmd_vel at 50Hz. It calculates the velocity and

10

direction of 3 motors according to kinematics and encode it into an ASC-II encoded string of
length 19 with format as defined in Fig. 14. The string contains 3 3-digit velocity ending with
motor-identifier (left(l), right(r) and back(b)), 3 direction flags (0 for clockwise and 1 for counter-
clockwise) ending with ’d’ and 1 end marker to help synchronize the serial communication. This
message will be sent to the AtMega-328P with serial communication of 19200 baud rates, which
can support the transfer of 19200bits

8bit×50Hz = 48 characters at most. However, the transfer of string is
not guaranteed to be synchronized at the start of first character and the AtMega-328p side will
use the end marker star to decode the message to its original order.

FIGURE 13: Flowchart showing the working principle of motor motion control

FIGURE 14: Defined format of motor command string

As shown in Fig. 15, the Twist velocity command (vx, vy, vyaw) is converted to the motor
velocities of 3 omni-directional wheels by solving the kinematics equation:

cos(π6) · vleft − cos(π6) · vright = vx (1)

sin(π6) · vleft + sin(π6) · vright − vback = vy (2)

(vleft + vright + vback) = Radius ∗ vyaw (3)

11

FIGURE 15: Defined format of motor command string

The computed motor velocities are multiplied by a compensation factor of 1.3 fed to the
target output of the PID controller.

Fine tunning of the PID parameters requires to take into consideration the plant model
in different situations (grounds with different viscous friction factor, Omnibot with different
furniture load, etc.). Too many approximations have to be made and this would make the
theoretically tuned optimal parameters useless in practice. For this project, the PID parameters
are initialized to the recommended value from the Nexus demo program and tuned according to
robot performance in practice. The final parameters of the PID are selected to be Kp = 0.26,Ki =

0.02,Kd = 0.10, which results in a smooth and reactive motion with the load of a chair on the
floor of BioRob Laboratory.

Figs. 16–19 show the test results of Omnibot’s performance in following different target
velocities. The Omnibot is commanded to accelerate to the target velocity, keep moving at this
velocity for some time and then brake. The data is collected using Optitrack and the missing
data is handled with a moving-median filter with 1s window size. It can be seen that the PID
controller is aggressive at high speed (0.30m/s, Fig. 19) and slow at low speed (0.15m/s, Fig. 16).
But for the medium speed (0.20m/s and 0.25m/s) where Omnibot is configured to run, the
performance is responsive and robust (Figs. 17–18).

12

FIGURE 16: 0.15m/s target FIGURE 17: 0.20m/s target

FIGURE 18: 0.25m/s target FIGURE 19: 0.30m/s target

3.3.2 Sonars

The pre-built platform comes with 3 URM-04 sonars and can be extended to up to 32 sonars
in a chain. The Mega board communicates with sonars with message templates via RS-485
interface. Tab. 6 shows message templates used to configure and communicate with the sonar.

Command Hex
Set device ids 0x55,0xaa,device,0x01,0x55,0xff,CHECKSUM

Trigger sonar measurements 0x55,0xaa,device,0x00,0x01,CHECKSUM
Read sonar measurements 0x55,0xaa,device,0x00,0x02,CHECKSUM

Read temperature 0x55,0xaa,device,0x00,0x03,CHECKSUM

TABLE 2: Message template for communicating with sonars

The “set device IDs” command is sent once at start up to initialize the sonars. The sonars
are triggered one after another in order of the address. Each sonar requires 50ms to catch the
reflected signal, convert it to distance and buffer it into the memory. Also, two sonars cannot
trigger at the same time to avoid the interference between waves. Therefore, the sonar system is
upper bounded to the frequency of 1000ms

50ms×3sonar ≈ 6.(67)Hz.

13

The URM04 sonar has a resolution of 1cm and a detection range of 4cm to 500cm. The
mapping from distance to reading is shown as in Fig. 20.

FIGURE 20: Detection range and readings of URM-04 sonar

It can be seen that with the same distance value from different directions (in red) the sonar
returns different attenuations which correspond to different readings. This makes the local
navigation based on sonars exclusively rather difficult. Also, considering the fact that the
furniture legs could block the sonars from time to time, the sonar data is not used to implement
local avoidance in this project. The sonar data is only examined at the ROS master for the
availability of measurement and correctness of the framework as shown in Fig. 21. It could be
interesting to add more sonars, better position sonars or combine sonars with other proximity
sensors to explore the local avoidance in future projects.

FIGURE 21: Sonar data streaming on ROS master

3.3.3 LED

An LED strip with 48 LEDs is pasted at the bottom of Omnibot and displays the status of
motion. The LED strip consumes 2.4A current when fully lit up. This exceeds the limit current of
Mega’s regulator and an external non-isolated DC-DC converter LDO03 is introduced to power
the LED strip directly.

The LED strip has 3 display modes in total.

• When the robot is still, 8 LEDs scattered on a hexagon light up in blue (0x0000FF).

14

• When the robot moves toward 1 direction, 9 LEDs on the forward direction light up. The
middle LED is green (0x00FF00) and the side LEDs are yellow (0xFFFF00). Colors of LEDs
between the middle one and the side one is gradient with Lightness Chroma Hue (LCH)
method. Fig. 22.

• When the robot is turning, 8 LEDs scattered on a hexagon light up in red (0xFF0000). The
LEDs rotate in the same direction of turning. Fig. 23.

FIGURE 22: LED display moving mode FIGURE 23: LED display turning mode

When the robot performs a motion combining moving and turning, the turning mode will
dominant and be displayed.

3.3.4 Bluetooth

Omnibot is teleoperated via the Serial communication over Bluetooth JY-MCU at 115200
baud rate. 4 steps are performed to form the communication:

• The Bluetooth is configured with AT commands to run at 115200 bps.

• The Mega firmwire is configured with ros_arduino package to communicate with master at
115200 bps.

• The Bluetooth is paired with master PC as a serial resource with rfcomm commands

• The communication is built over the serial resource with ros_serial package given the baud
rate defined above.

15

4 Algorithms

4.1 Mobile Furniture Localisation

The localisation of Omnibot in the baseline design is implemented with Optitrack (Optitrack
Documentation n.d.), which localizes by tracking unique marker patterns. The markers are placed
on the mobile furniture as shown in Fig. 24 and follows the following rules:

• Markers are placed in non-congruent unique patterns to distinguish bodies.

• A rigid body can be defined by at least 3 markers. But usually redundancy is needed to
compensate for environment and material reflections.

FIGURE 24: Marker placements on mobile furnitures

The detected rigid body poses are streamed to the ROS master via Virtual Reality Peripheral
Network (VRPN)1 at 120Hz. If the rigid body is temporarily blocked, the old pose data is used.

The pros and cons of this Optitrack localisation method are listed as follows:

+ Stable localisation against noise with redundant marker setup

+ Built-in motion data analysis pipeline for robots

+ High refresh rates with movie industry standards

− Requires careful device set up and calibration

− Localisation is limited inside the Optitrack arena

Although being a good method in testing and analysis, the Optitrack localisation is not
suitable for real-world application due to its high requirements on hardware and environments.
The localisation with the Optitrack is applied in this project to achieve the best testing perform-
ance of the robot in the design phase. In applications the method should be replaced with more
general localisation methods based on vision/deep learning. The markers placed in a skeleton
pattern on mobile furniture can also serve to validate results of another project on furniture
skeleton localisation.

1http://wiki.ros.org/vrpn_client_ros

16

http://wiki.ros.org/vrpn_client_ros

4.2 Mobile Furniture Navigation

The mobile furniture is expected to navigate around obstacles to go to desired positions. A
simple test scenario is considered in which a user sitting on a chair commands the Omnibot to
drive another chair to come in front of them, while avoiding a table in between. The baseline of
the global navigation is implemented with a simplified version of visibility graph as described
in Book Ben-Ari and Mondada 2017. Only 1 rectangular obstacle is considered in the simplified
visibility graph. The path planning is done by checking the intersections between the path and
the expanded obstacle.

The algorithm runs as shown in Alg. 1 and in Fig. 25.

Algorithm 1: Simplified Visibility Graph

1 while not reach the goal do
2 if intersection <= 1 then
3 go straight to the target;
4 if intersection = 2 then
5 if intersection on adjacent edges then
6 go to corner node between the intersection;
7 go straight to target;

8 else
9 go to closest node(NODE 2) to the target via

10 the closer node(NODE 1) of the two closest nodes to robot to NODE 2;
11 go straight to target;

12 end
13 if intersection = 3 then
14 Robot aligned with obstacle edge
15 go straight to target;

16 if intersection = 4 then
17 Intersection across diagonal
18 go to one of either side of diagonal;
19 go straight to target;

20 end
21 while not align with the goal do
22 rotate to align with the goal;
23 end

17

FIGURE 25: Robot path with simplified visibility graph

To avoid oscillations at obstacle nodes and avoid robot from entering the obstacle due to
localisation error, the intersection is calculated on a contracted version of obstacle boundary.
To avoid oscillation at target and alignment, the robot performs a slow stop and the motion is
programmed with a dead-zone in which command only activates when the error is greater than
a threshold (5cm or 5°).

4.3 Interactive user Interface

The Omnibot can be controlled with an interactive user interface built with the ROS package
called dynamic_reconfigurer2 and shown in Fig. 26.

FIGURE 26: Interactive user interface

The parameters that can be changed in the interface and corresponding effects are presented
in Tab. 3

2http://wiki.ros.org/rqt_reconfigure

18

http://wiki.ros.org/rqt_reconfigure

Parameters Values Effects

mode
Manual Enter manual control mode

Automatic Enter global navigation
Debug Stop and print verbose debug info

ctrlsrc
Voice Voice command (Subsec. 4.4) takes over manual control

Gesture Gesture command (Subsec. 4.5) takes over manual control
Tablet Tablet command (Subsec. 4.6) takes over manual control

cmd

Stop Stop if no other control sources are activated
Forward Move forward if no other control sources are activated

Backward Move backward if no other control sources are activated
Left Move left if no other control sources are activated

Right Move right if no other control sources are activated
wmax 0.0 to 1.57radians/s robot turning velocity
vmax 0.0 to 0.4m/s robot moving velocity

TABLE 3: Interactive user interface parameters

This interface is the top-level control interface for Omnibot, which not only controls the
robot directly, but also switches between different interactive modes. People with limited
mobility can suffer from other issues impacting on their interaction abilities as well. Typical
disorders are above-elbow amputee or the extremities paralysis by the spine cord injury. The
intelligent assistive robot design often comes with various control methods to help address this
problem (Moon et al. 2003). In this project, a total of 4 different kinds of interactive controls are
implemented to help people with different needs or different preferences.

• Program interface designed for carer of the people for configuration purposes.

• Voice control designed for people who cannot move their upper body.

• Mobile application control designed for people who can move their upper limbs and wants
to control the robot in an intuitive way.

• Gesture control also designed for people who can move upper-limbs but not with enough
precision for operating tablets.

4.4 Voice control

Omnibot can be controlled with voice commands in the interactive mode. The voice
control is implemented with DeepSpeech3, an open-source speech-to-text engine (Hannun et al.
2014, Amodei et al. 2015). The core of DeepSpeech framework is a recurrent neural network
(RNN) with 5 hidden layers which ingests speech spectrograms and generates English text
transcriptions. The network structure is shown in Fig. 27.

3https://deepspeech.readthedocs.io/en/r0.9/

19

https://deepspeech.readthedocs.io/en/r0.9/

FIGURE 27: Structure of DeepSpeech RNN model and notation

In the project, a real-time voice transcription script is implemented with DeepSpeech
framework as shown in Fig. 28.

FIGURE 28: Flowchart of voice commands recognition

The script takes in a speech spectrogram truncated by the voice activation feature. The
spectrogram goes through pre-trained DeepSpeech model with a hot-words dictionary. In the
dictionary the desired commands are boosted and the words that sound close to commands
are penalized (eg. ”left” is boosted and ”let” is penalized). A look-up is performed on the
transcribed texts in the predefined command list in Tab. 4. Once matched, the commands would
be published to the Omnibot motion control node.

20

Command Effect
Automatic Enter global navigation mode if not already; Do global navigation as in Subsec. 4.2

Stop Enter manual mode if not already; Stop
Forward Go forward if in manual mode

Backward Go backward if in manual mode
Left Go left if in manual mode

Right Go right if in manual mode

TABLE 4: Pre-defined command list

According to the table, voice commands can control the Omnibot to do the global navigation
as introduced in Subsec. 4.2 or manually. In the manual mode voice commands set a target 5m
in front of the commanded direction and navigates the robot towards it. During the run the
robot direction is continuously calibrated with the localisation information.

Although the DeepSpeech model is rendered more stable against pronunciations and
accents thanks to the hot-words dictionary, misinterpretations still occur in noisy environments.
A command is usually better recognized in a context than stand-alone. Also, the voice activation
feature could lead to loss of information. Due to 2 points above, it is recommended to utter the
critical words (command) at 2nd place or later of a sentence within meaningful context. (Eg.
The sentence "Robot please go forward" has a higher chance of being correctly interpreted than
shouting out "FORWARD!")

Also, since the nature of DeepSpeech is a universal voice-text engine. The output of the
network includes all possible texts other than the commands. This results in a lower performance
and lower accuracy in interpretation. For this specific task, it could be a better idea to train a
simple multi-output network for a simple task of classifying commands.

However, the universal nature of DeepSpeech also brings convenience. The command list
could be easily expanded or edited by changing the hot-words dictionary without retraining
the model and regenerating the dataset, which makes the baseline design quite extensive in the
future. This is the main reason why DeepSpeech framework is used in this project.

4.5 Gesture control

Omnibot can be controlled with gesture commands in the interactive mode. The gesture
control is implemented with MediaPipe framework4 (Lugaresi et al. 2019), which offers a detection
method for Hand Landmark Model as shown in Fig. 29.

4https://google.github.io/mediapipe/

21

https://google.github.io/mediapipe/

FIGURE 29: Hand Landmark Model

The detection of Hand Landmark Model consists of 2 steps as shown in Fig. 30. First, the
palm is detected over the whole image with Single Shot MultiBox Detector (SSD) (W. Liu et al.
2015). Then, the 21 landmarks are obtained via regression on the palm pixels.

FIGURE 30: Hand Landmark Model detection pipeline.

In this project, only the most significant palm is detected to make the Landmark Model.
And a further step is performed to predict the gesture of the hand:

• Curved: Detecting a finger is curved or not by comparing the vector direction of
−−−−−−−−−→
(MCP,PIP)

and
−−−−−−−−→
(PIP, TIP).

• Direction: Detecting the finger direction by doing arctan2 of vector
−−−−−−−−−→
(MCP,PIP).

The gestures can be classified in to 6 commands as shown in Tab. 5 with the help of 2
information above.

22

Gesture Curved Direction Effect
None - Enter automatic mode

All - Enter manual mode and stop

Not index finger Up Move forward if in manual mode

Not index finger Down Move backward if in manual mode

Not index finger Left Move left if in manual mode

Not index finger Right Move right if in manual mode

TABLE 5: Gesture command list

The command operations in gesture control mode are exactly the same as in voice control
mode. Also, it is observed that the gesture control is much more responsive (over 20Hz with
CPU) than voice control, as the multi-box detection is a binary pixel classification in nature and
is much lighter than the voice transcription which has thousands of text outputs as classes.

Similar to DeepSpeech, the gesture lists could be easily extended by defining new relations
between different landmarks without re-training any models, which makes the project easily
extendable in the future.

4.6 Tablet control

Omnibot can be controlled with a tablet application on Android in the interactive mode.
The application is developed with Java in Android Studio.

The application communicates with ROS master over TCP/IP via ros_bridge server5. For
connection the mobile device has to be in the same network as the master PC and the IP address
and server port of ROS master is required. The welcome screen is shown in Fig. 31

5http://wiki.ros.org/rosbridge_server

23

http://wiki.ros.org/rosbridge_server

FIGURE 31: Welcome screen of the tablet application

Once the connection is formed, the application pops out a message and goes into main
activity as shown in Fig. 32. The Omnibot control is performed in this main activity page. There
are 2 control modes in the main activity page. In the automatic mode, the robot would perform
the global navigation as described in Subsec. 4.2, and all other elements on the screen are locked.
In the manual control mode, other elements are unlocked and can be accessed for motion control.
The joystick controls the direction and velocity of the robot. The left and right buttons control
the turning of the robot. The robot could move and turn at the same time. There is a safety
measure to prevent the left and right arrows being pressed at the same time.

FIGURE 32: Main activity of tablet application

Besides sending commands to ROS master, the main activity page could also subscribe to
topics and show the messages from the master. This function could be extended to allow the
user to have a full monitor of robot status remotely.

24

5 Conclusion

By the end of the project, a full baseline for adapting a pre-built robot platform to Omnibot
is successfully designed, implemented and verified.

The mechanical baseline allows the Omnibot to drive the provided furniture smoothly and
firmly at medium velocity. The design is easy and economical to replicate. The further extension
of the baseline with extra layer is analyzed and discussed.

The electronic baseline allows the teleoperation of motors, sonars and LEDs on the Omnibot
via Bluetooth. The new system is abundant with resources for further extension. A more
compact solution is raised to integrate the current system and reduce redundancies.

The algorithm baseline realizes the basic functionalities of Omnibot as a mobile robot.
The localisation is implemented with a friendly style to combine with the furniture skeleton
localisation project by Lixuan. The navigation accomplishes the basic task of obstacle avoidance
in a simple setup. The interactive control (user interface, voice, gesture, tablet) provides various
control styles that could fit different users. Above all, the baseline algorithms are implemented
in a way that is easily extensible for future projects.

The Omnibot follows the traditional style of mobile robot and goes a plainer way in
mobilizing furniture than another famous robot Roombot (Hauser et al. 2020) in the laboratory.
At the cost of modularity and locomotion varieties, Omnibot has increased mechanical strength,
better extensibility and lower construction cost. With proper extensions in future projects,
Omnibot is potential to commercialize and benefit people with unlimited possibilities.

25

6 Appendix

Demo videos are shared with EPFL-wide Google Drive at

https://drive.google.com/drive/folders/1gyu45ZkrJY6R2dZy_43KalAXH-d8TCW6?

usp=sharing

Source codes, configs and setup guides are documented at internal Git Repository at

https://ponyo.epfl.ch/students/mobfur

with the following structure:

FIGURE 33: Repository structure

26

https://drive.google.com/drive/folders/1gyu45ZkrJY6R2dZy_43KalAXH-d8TCW6?usp=sharing
https://drive.google.com/drive/folders/1gyu45ZkrJY6R2dZy_43KalAXH-d8TCW6?usp=sharing
https://ponyo.epfl.ch/students/mobfur

The project timeline is shown as in Tab. 6.

Week Work
1 Draft for mechanical connection, modelling of parts and attachments
2 Discussion and refinement for mechanical design,improve models, place orders
3 ROS control structure setup, wired control of available sensors/actuators
4 Wireless control of sensors/actuators via Bluetooth
5 Orders arrive, mechanical assembly and engineering
6 Motion control and localisation with Optitrack
7 Global navigation with simplified visibility graph
8 Mid-term presentation, document review for interactive controls
9 Interactive voice control
10 Interactive gesture control
11 User interface for mode switch and manual commands
12 Android App development
13 Android App development
14 Integral test, code clean and project wrap up

TABLE 6: Timeline of the project

27

References

Yanco, HA and John Aronis Richard Simpson (1998). Assistive Technology and Artificial Intelligence.
Zisis, Eleftherios et al. (Aug. 2021). ‘Digital Reconstruction of the Neuro-Glia-Vascular Archi-

tecture’. In: Cerebral Cortex 31.12, pp. 5686–5703. ISSN: 1047-3211. DOI: 10.1093/cercor/
bhab254. eprint: https://academic.oup.com/cercor/article-pdf/31/12/
5686 / 40814577 / bhab254 . pdf. URL: https : / / doi . org / 10 . 1093 / cercor /
bhab254.

Vouga, Tristan et al. (2017). ‘TWIICE—A lightweight lower-limb exoskeleton for complete
paraplegics’. In: 2017 International Conference on Rehabilitation Robotics (ICORR). IEEE, pp. 1639–
1645.

Liu, Dong et al. (2018). ‘EEG-based lower-limb movement onset decoding: Continuous classific-
ation and asynchronous detection’. In: IEEE Transactions on Neural Systems and Rehabilitation
Engineering 26.8, pp. 1626–1635.

Optitrack Documentation (n.d.). https://v22.wiki.optitrack.com/index.php. Ac-
cessed: 2022-01-05.

Ben-Ari, Mordechai and Francesco Mondada (2017). Elements of robotics. Springer Nature.
Moon, Inhyuk et al. (2003). ‘Intelligent robotic wheelchair with EMG-, gesture-, and voice-

based interfaces’. In: Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS 2003)(Cat. No. 03CH37453). Vol. 4. IEEE, pp. 3453–3458.

Hannun, Awni Y. et al. (2014). ‘Deep Speech: Scaling up end-to-end speech recognition’. In:
CoRR abs/1412.5567. arXiv: 1412.5567. URL: http://arxiv.org/abs/1412.5567.

Amodei, Dario et al. (2015). ‘Deep Speech 2: End-to-End Speech Recognition in English and
Mandarin’. In: CoRR abs/1512.02595. arXiv: 1512.02595. URL: http://arxiv.org/abs/
1512.02595.

Lugaresi, Camillo et al. (2019). ‘MediaPipe: A Framework for Building Perception Pipelines’. In:
CoRR abs/1906.08172. arXiv: 1906.08172. URL: http://arxiv.org/abs/1906.08172.

Liu, Wei et al. (2015). ‘SSD: Single Shot MultiBox Detector’. In: CoRR abs/1512.02325. arXiv:
1512.02325. URL: http://arxiv.org/abs/1512.02325.

Hauser, S. et al. (2020). ‘Roombots extended: Challenges in the next generation of self-reconfigurable
modular robots and their application in adaptive and assistive furniture’. In: Robotics and
Autonomous Systems 127, p. 103467. ISSN: 0921-8890. DOI: https://doi.org/10.1016/j.
robot.2020.103467. URL: https://www.sciencedirect.com/science/article/
pii/S0921889019303379.

28

https://doi.org/10.1093/cercor/bhab254
https://doi.org/10.1093/cercor/bhab254
https://academic.oup.com/cercor/article-pdf/31/12/5686/40814577/bhab254.pdf
https://academic.oup.com/cercor/article-pdf/31/12/5686/40814577/bhab254.pdf
https://doi.org/10.1093/cercor/bhab254
https://doi.org/10.1093/cercor/bhab254
https://v22.wiki.optitrack.com/index.php
https://arxiv.org/abs/1412.5567
http://arxiv.org/abs/1412.5567
https://arxiv.org/abs/1512.02595
http://arxiv.org/abs/1512.02595
http://arxiv.org/abs/1512.02595
https://arxiv.org/abs/1906.08172
http://arxiv.org/abs/1906.08172
https://arxiv.org/abs/1512.02325
http://arxiv.org/abs/1512.02325
https://doi.org/https://doi.org/10.1016/j.robot.2020.103467
https://doi.org/https://doi.org/10.1016/j.robot.2020.103467
https://www.sciencedirect.com/science/article/pii/S0921889019303379
https://www.sciencedirect.com/science/article/pii/S0921889019303379

	Introduction
	Motivation
	Project Goals
	Report Outline

	Mechanics
	Attachment Configuration
	Module Expansion

	Electronics
	Limitation of old system
	Connection plans
	Embedded program logic
	Motion control
	Sonars
	LED
	Bluetooth

	Algorithms
	Mobile Furniture Localisation
	Mobile Furniture Navigation
	Interactive user Interface
	Voice control
	Gesture control
	Tablet control

	Conclusion
	Appendix

